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Rectangular Wires in Pulse-Heating Experiments1

G. Lohöfer2,3 and G. Pottlacher4

The electric and temperature fields in a pulse-heated wire with a quadratic
cross section are calculated analytically. The quick increase of the current
through the wire during the pulse-heating process results in a nonuniform
electric field (skin effect), and thus also a nonuniform temperature field over
the wire cross section. By means of a typical pulse-heating experiment per-
formed on a quadratic niobium wire, the magnitudes of the deviations of
these fields from their mean values are graphically displayed. Compared with
the strength of the mean fields, these deviations are significant only in the
first few µs of the heating process.

KEY WORDS: exploding wire; nonuniform electric field; nonuniform tem-
perature field; pulse heating; rectangular cross section.

1. INTRODUCTION

For the determination of thermophysical properties of metals at temperatures
between ca. 1000 and 7000 K, the fast ohmic pulse-heating technique can
be applied [1]. This method generally uses wire-shaped metal samples of
ca. 0.5 mm diameter and 60 mm length which, as part of a fast capac-
itor discharge apparatus, are very rapidly resistively volume heated and
melted with heating rates of about 107 K·s−1. Therefore, this ohmic pulse-
heating technique is also known as the “exploding wire technique” in the
older literature. Thermophysical data obtained by fast pulse heating are
very reliable due to improved data acquisition systems and are often used
for numerical simulations.
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During the electric discharge through the solid and, after melting, liq-
uid metal specimen measurements of the current through the wire, the
voltage drop along the wire, the radiance temperature, and the thermal
expansion of the wire are performed as a function of time. Then, via
simple physical relations, the heat capacity, enthalpy, electrical resistivity,
density, thermal conductivity, and thermal diffusivity for the solid and
liquid samples and their dependence on temperature can be calculated
from these measurement results. However, these relations implicitly assume
uniform electric fields and current densities over the wire cross section and
thus also homogeneously heated samples despite the fact, that, accord-
ing to Faraday’s law, quick changes of electric fields, which occur in fast
pulse-heating experiments, result in additional induction fields and eddy
currents disturbing any spatial uniformity. On the other hand, detailed cal-
culations about the influence of the skin effect during fast pulse heating [2]
show that variations of the electric field, which are significant compared to
the mean field, generally occur only at the beginning of the heating pro-
cess. Variations of the temperature field across the wire, which result from
ohmic losses of the nonuniform current density field driven by the electric
field, remain however, because the equalizing effect of the heat conduction
is negligibly small within the very short experimental time. But, compared
to the absolute temperatures of the high melting metals under investiga-
tion, these temperature variations are, in general, relatively small, as we
will show in the following.

Since many pure metals and metallic alloys are ductile, the wire-
shaped samples, used for the pulse-heating experiment, are generally man-
ufactured by drawing. This technique has the advantage of simplicity, and
it enables the formation of elementary, circular cross sections of appro-
priate and constant diameters over the whole length of the wire. Recently
however, the industry is interested in thermophysical data of materials
like TiAl intermetallic alloys [3], which possess attractive high-temperature
mechanical properties. But, due to their weakness and limited ductility, the
manufacturing of wire samples from these materials has to be done by
cutting from the bulk by spark erosion, resulting in rectangular wire cross
sections.

The altered shape of the cross section immediately brings up ques-
tions on what the current densities and temperature distributions in the
rectangular pulse-heated wire will be and how homogeneous these fields
are, especially in the four corners of the sample. As already mentioned
above, the answers have direct implication on the temperature measure-
ment and the determination of thermophysical material pararmeters. These
problems are investigated in this paper.
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2. EXPERIMENTAL ARRANGEMENT

The experimental situation is schematically shown in Fig. 1. A wire-
shaped sample of a quadratic cross section, the half-thickness a(≈ 0.2 mm)
of which is much smaller than its length l(≈ 60 mm), is fixed along the
axis of a cylindrical experimental chamber of internal radius b(≈ 75 mm)
and wall thickness d(≈ 3 mm). Thus, we have the geometric relations,

a � l, d � l (1)

and

a �b. (2)

These relations simplify the following calculations considerably, because
we may neglect all terms of the order of magnitude of a/l, d/l, and a/b.

3. ELECTRIC FIELDS

3.1. Partial Differential Equations

A time-dependent voltage source U(t), generally a condenser bank of
high capacity, feeds a current I (t) into the electric circuit consisting of the
wire sample and the chamber walls. The resulting space- and time-depen-
dent electric field E(x, t) and current density field j(x, t) in the wire and
the surrounding area are sufficiently well described by the partial differen-
tial equation [4],

∆E(x, t)=µ0∂/∂t j(x, t)+∇ρ(x, t)/ε0, (3)

which results from the quasi-stationary Maxwell equations, in which the
displacement current term is neglected, and Ohm’s law,

j(x, t)=σ(x, t)E(x, t). (4)

Here σ(x, t) denotes the electrical conductivity and ρ(x, t) is the electrical
charge density. In the following we assume for the sake of simplicity:

1. σ(x, t) = σ0 to be constant (temperature independent) inside the
conductors.

According to the experimental arrangement shown in Fig. 1 and Eq. (4),

2. only the z-component of the electric field is of interest,
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Fig. 1. (a) Schematic view on the cut along
the x-, y-plane (z = 0) through the experimental
arrangement. (b) Schematic view on the cut along
the x-, z-plane (y = 0) through the experimental
arrangement. A pulse-heated wire of quadratic
cross section (gray), powered by a time-dependent
voltage source U(t), is fixed in the center of a
cylindrical experimental chamber of electrically
conducting (hatched) and nonconducting (cross-
hatched) walls. The displayed dimensions are not
in correct scale.
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because this component alone drives the current through the wire and the
surrounding cylinder jacket. Thus, writing “electric field,” we only mean its
z-component in the following.

Inside the thin wire and the cylinder jacket the characteristic length
scale of field variations perpendicular to the z-direction is determined by a

or d, i.e., |ez ×∇|≈1/a or ≈1/d, respectively, whereas for field variations
in the z-direction, it is generally given by l, i.e., |∂/∂z|≈1/l. Consequently,
due to Eq. (1), gradients in the z-direction, and therefore

3. any dependence of the fields on the z-variable in the wire and the
cylinder jacket, can be disregarded.

Thus, for the z-component of electric and current density fields in the con-
ductors, defined by

Ez(x, y, t) :=E(x, t) · ez and jz(x, y, t) := j(x, t) · ez,

Eqs. (3) and (4) now read in Cartesian coordinates (x, y, z),

{
∂2

∂x2
+ ∂2

∂y2

}
Ez(x, y, t)=µ0

∂

∂t
jz(x, y, t), (5)

jz(x, y, t)=σ0Ez(x, y, t). (6)

In the area between the wire and outer cylinder jacket, where neither elec-
tric currents nor electric charges are present, the partial differential equa-
tion, Eq. (3), reads for the z-component of the electric field in cylindrical
coordinates (r, ϕ, z),{

1
r

∂

∂r
r

∂

∂r
+ 1

r2

∂2

∂ϕ2
+ ∂2

∂z2

}
Ez(r, ϕ, z, t)=0. (7)

3.2. Boundary Conditions

In order to solve Eqs. (5) and (6) for the electric field inside the wire,
we need to know the field at the wire boundary. This is provided by the
solution of Eq. (7) yielding the electric field between the wire and the sur-
rounding cylinder. But also the solution of Eq. (7) requires boundary val-
ues at the inner surface of the cylinder jacket. These will be calculated as
follows.

Denoting by the index W quantities belonging to the wire and by the
index C those belonging to the cylinder jacket, we estimate for the mean
values 〈Ez〉 and 〈jz〉 of the electric and current density fields inside these
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conductors that

−〈Ez〉C = −〈jz〉C
σC

≈ 1
σC

−IC

2πbd
= 〈jz〉W

σC

4a2

2πbd
= σW

σC

4a

2πd

a

b
〈Ez〉W,

where Eq. (6), and the fact that the total currents through the wire and
the jacket satisfy IW =−IC , have been used. Hence, according to Eq. (2),
|〈Ez〉C |�|〈Ez〉W |. Being mainly interested in the field inside the wire, this
permits us to set the electric field inside the jacket to zero. Due to the
continuity of the tangential component Ez everywhere at the inner jacket
surface, which we note here without proof, we find as the first boundary
condition of Eq. (7) at r =b,

lim
r→b
r<b

Ez(r, ϕ, t)=0. (8)

The determination of the second condition is influenced by the following
considerations.

The time-dependent change of the electrical current density through
the wire influences by magnetic induction also the electric and current
density fields in the cylinder jacket. This means, that, due to the rectan-
gular cross section of the wire, the fields in the circular cylinder jacket
are, strictly speaking, not axially symmetric. But, since the magnetic field
decreases as B(s)∝ s−1 with the distance s from a current line [4], the rel-
ative difference of the magnetic field and thus also of the electric and cur-
rent density field in the cylinder jacket between the two extremes s1 and
s2, shown in Fig. 1, can be estimated by

B(s1)−B(s2)

B(s1)
=1− b−a

√
2

b−a
=

√
2−1

1−a/b
· a

b
�1,

where Eq. (2) has been used. Consequently,

4. for radial distances r ≥ b from the wire axis, the fields can be
regarded as rotationally symmetric.

The second boundary condition follows from an integration of Eq. (5)
over the annulus D of thickness d + ε with ε >0, bounded by the dashed
lines in Fig. 1. Since, according to the above result, the ϕ-dependence of
Ez can be neglected near r =b as well as the z-dependence due to condi-
tion 3, this integral reads in cylindrical coordinates (r, ϕ),

0 =
∫ 2π

0

∫ b+d+ε

b

1
r

∂

∂r
r

∂

∂r
Ez(r, t)r dr dϕ

−µ0
∂

∂t

∫ ∫
D

jz(r, t)dS =2π

[
r
∂Ez(r, t)

∂r

]r=b+d+ε

r=b

+µ0İ (t),
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where I (t) denotes the total current through the wire and through the
cylinder jacket and İ (t) is its time derivative. Since the electric field dis-
appears everywhere outside the experimental chamber including the outer
boundary of D, which we note here without proof, the above equa-
tion leads immediately to the second boundary condition of Eq. (7) at
r =b,

lim
r→b
r<b

∂Ez(r, ϕ, t)

∂r
= µ0

2πb
İ (t). (9)

3.3. Electric Field between Wire and Cylinder Jacket

The electrical field between the wire and the cylinder jacket is the
solution of the partial differential equation, Eq. (7), subjected to the
boundary conditions, Eqs. (8) and (9). The simple, unique result reads

E(r, ϕ, t)= µ0

2π
İ (t)ln

( r

b

)
≡ µ0

2π
İ (t)ln

(√
x2 +y2

b

)
(10)

and is displayed in Fig. 2. The field is negative and decreases steeply
towards the tiny wire. Evidently, the boundary conditions have transferred
the rotational symmetry to the electric field in the whole area outside the
wire.

Only for interest, we finally note that the radial component of the
electric field that drives the current in the top and bottom of the cylin-
drical experiment chamber enters also into the area between the cylinder
jacket and the wire. Here it starts and ends on influenced electric charges
on the metal surfaces, but it does not enter the wire and the cylinder
jacket itself.

3.4. Electric Field in the Quadratic Wire

The combination of Eqs. (5) and (6) results in the partial differential
equation for the interesting z-component of the electric field in the rectan-
gular wire;
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Fig. 2. z-component of the normalized electric field between the wire and
the surrounding circular cylinder jacket. The field decreases steeply from
zero at the inner jacket surface towards negative values at the wire surface.
The wire is displayed by the tiny line in the center.

{
∂2

∂ξ2
+ ∂2

∂η2

}
Ez(ξ, η, τ )= ∂

∂τ
Ez(ξ, η, τ ), (11)

where the following dimensionless variables have been introduced:

ξ := x

a
, η := y

a
, τ := t

a2µ0σ0
. (12)

To find the corresponding boundary conditions, we note without proof
that the derivative of Ez(ξ, η, τ ) normal to the wire boundary is continu-
ous at the wire boundary. This means, that from the derivative of Eq. (10)
in the ξ -direction, we receive at the wire boundaries: ξ =±1, −1<η<+1
the relation,

lim
ξ→±1
|ξ |<1

∂Ez(ξ, η, τ )

∂ξ
=±R0

l
İ (τ )

2/π

1+η2
, (13a)
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and from the derivative of Eq. (10) in the η-direction, we receive at the
wire boundaries: η=±1,−1<ξ <+1 the relation,

lim
η→±1
|η|<1

∂Ez(ξ, η, τ )

∂η
=±R0

l
İ (τ )

2/π

1+ ξ2
, (13b)

where

R0 := l

4a2σ0

is the Ohm resistance of the whole wire, and where now: İ (τ ) :=∂/∂τI (τ ).
As the initial condition, we assume

I (τ )=0 ⇒ Ez(ξ, η, τ )=0 for τ =0. (14)

The z-component of the electric field in the quadratic wire now results
from the unique solution of Eqs. (11), (13a), (13b), and (14). Expanded in
a double Fourier series [5], it reads

Ez(ξ, η, τ )

= R0

l

(
I (τ )+

∞∑
m=0

∞∑
n=0

n+m 
=0

(2− δm,0)(2− δn,0)(−1)m+n+1 αm +αn

2
hm,n(τ )

cos(mπξ) cos(nπη)

)
(15)

with the time-dependent function,

hm,n(τ ) :=
∫ τ

0
İ (τ ′) exp

[
−(m2 +n2)π2(τ − τ ′)

]
dτ ′

≡ I (τ )−(m2 +n2)π2
∫ τ

0
I (τ ′) exp

[
−(m2 +n2)π2(τ−τ ′)

]
dτ ′,(16)

where the second term results from partial integration of the first one, the
definition,

αk := (−1)k+1 4
π

∫ 1

0

cos(k π t)

1+ t2
dt (17)

and the Kronecker delta,

δi,k :=
{

1 if i =k

0 if i 
=k
. (18)
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Evidently, the stationary value of Ez,

Ez,stat(τ ) := R0

l
I (τ ), (19)

which is identical to the mean value of Ez over the wire cross section,
is just given by the first term in Eq. (15). The second term in Eq. (15)
describes the spatial deviation from this uniform value in case of a
changing electric current, i.e., if İ (τ ) 
=0.

3.5. Special Case: Electric Field in a Pulse-Heated Quadratic Niobium
Wire

A typical current-time diagram I (τ ), measured for a pulse-heated cir-
cular niobium wire of 0.5 mm diameter [6], is shown in Fig. 3. We use this
diagram to calculate in the following with Eqs. (15)–(18) the electric field
in a quadratic niobium wire of the same cross-sectional area, which corre-
sponds to a wire thickness of 2a ≈ 0.44 mm. The electrical conductivity of
the wire material, assumed to be constant in the present theory, is set to
σ0 =2.97×106 
−1 ·m−1, which corresponds to the electrical conductivity
of niobium at ca. 700 K. With these values the heating time to reach the
melting temperature in the solid quadratic niobium wire, calculated from
Eq. (23), agrees just with the measured one; see Fig. 3.

In Fig. 4, electric field distributions over the quadratic wire cross sec-
tion, i.e., for −a ≤x ≤a and −a ≤y ≤a, of our above defined example are
displayed at the times t =0.8µs, t =4 µs, and t =26µs after the current has
been switched on. In the left column of Fig. 4, the absolute deviation of
the electric field from its stationary value, i.e., Ez(x, y, t)−Ez,stat(t), is pre-
sented. According to Eqs. (15), (16), and (19) this quantity depends only
on the time derivative of the current. For increasing current, occurring at
t = 0.8µs and t = 4 µs, the field shows the well known skin effect, i.e., it
is lower in the center of the wire than on its surface. For decreasing cur-
rent, occurring at t =26µs, this behavior is just inverted. Furthermore, we
see that Ez(x, y, t)−Ez,stat(t) is in the corners of the quadratic wire about
30% higher than in the middle of the side surfaces.

As already mentioned in the introduction, thermophysical properties
are generally calculated from the data of a pulse-heating experiment under
the assumption of a homogeneous electric field within the wire specimen.
The error accepted hereby depends on the relative deviation of the actual
electric field from its stationary value: [Ez(x, y, t) − Ez,stat(t)]/Ez,stat(t).
Due to the rapid increase of the current and thus, according to Eq. (19),
also of Ez,stat(t), this quantity decreases however very quickly in the
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Fig. 3. Measured values of the electric current (closed dots) and of the temperature
(open dots) in a pulse-heated circular niobium wire of 0.5 mm diameter. The calculated
mean temperature of the corresponding quadratic wire of 0.44 mm thickness and 2.97 ·
106
−1 ·m−1 electrical conductivity is represented by the full line.

course of time. For our special niobium specimen the relative field devia-
tion, presented in the right column of Fig. 4, is below 5% after 0.8µs and
below 1% after 4 µs. Thus, a few µs after the beginning of the pulse-heat-
ing experiment, the assumption of a homogeneous field in the rectangular
wire is generally justified.

Without proof, we finally note the simple, universally valid estimation,∣∣∣∣Ez(x, y, t)−Ez,stat(t)

Ez,stat(t)

∣∣∣∣≤ 0.39
τ(t)

=0.39
a2µ0σ0

t
, (20)

which holds for a typical pulse-heating experiment, where İ (t) ≥ 0 and
Ï (t)≤0, cf. Fig. 3.

4. TEMPERATURE FIELD

4.1. Temperature Field in the Quadratic Wire

The temperature field T (x, y, t) in the pulse-heated wire is calcu-
lated from the energy-balance equation [7]. For constant (temperature-
independent) material parameters, it reads in the dimensionless variables
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Fig. 4. Absolute (left) and relative (right) deviations of the electric field from its
stationary value over the cross section of a quadratic pulse-heated niobium wire for
different times after the heating current, shown in Fig. 3, has been switched on. For
increasing current, the field shows the typical skin effect.
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of Eq. (12),

ρmcp

a2µ0σ0

[
∂T (ξ, η, τ )

∂τ
−κ

{
∂2

∂ξ2
+ ∂2

∂η2

}
T (ξ, η, τ )

]

=σ0E
2
z (ξ, η, τ )− δ(x −xB)S(T (xB, τ)) (21)

and describes the increase of the internal-energy density in a volume ele-
ment of the wire (first term on the left of Eq. (21)), caused by heat
conduction from the surrounding elements (second term on the left), the
power density input from the electric field (first term on the right), and the
power density loss by radiation (second term on the right).

The last-mentioned term is the product of the Dirac delta function
δ(x − xB) and the Stefan-Boltzmann radiation law S(T (xB, τ)) [7] and
depends on the coordinates of the wire boundary xB := (ξB, ηB) only. Dur-
ing the fast pulse heating, shown in Fig. 3, this term is, however, much
smaller (for niobium at 4000 K by a factor 10−4) than the term describing
the electric power density input. Hence, we assume in the following that

5. heat loss by radiation can generally be neglected.

The order of magnitude of the heat conduction term in Eq. (21) is
determined by the material specific quantity,

κ := λµ0σ0

ρmcp

,

where ρm, cp, and λ denote the mass density, specific heat, and thermal
conductivity of the wire material, respectively. For all metals above room
temperature, κ < 10−2. For niobium, we even have κ < 4 × 10−4. Accord-
ingly, we assume in the following that

6. heat conduction can generally be neglected, when pulse heating
lasts only a few τ .

Under these conditions the remaining two terms of Eq. (21) can
immediately be integrated leading to the temperature field,

T (ξ, η, τ )= a2µ0σ
2
0

ρmcp

∫ τ

0
E2

z (ξ, η, τ ′)dτ ′ +T0 (22)

in the wire where T0 is the uniform temperature at τ =0. Another impor-
tant quantity represents the mean temperature in the quadratic wire;

〈T 〉(τ ) = 1
4a2

∫ +a

−a

∫ +a

−a
T (x, y, τ ) dxdy = a2µ0σ2

0
ρmcp

∫ τ

0

∫ 1
0

∫ 1
0 E2

z (ξ, η, τ ′) dξ dηdτ ′ +T0

= a2µ0σ2
0

ρmcp

∞∑
m=0

∞∑
n=0

{
(2− δm,0)(2− δn,0)

(
αm+αn

2

)2 ∫ τ

0 h2
n,m(τ ′)dτ ′

}
+T0

(23)
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where the integral over the wire cross section could be evaluated analyt-
ically. Evidently, the time integrals in both equations accumulate to the
deviation of the temperature field from its mean value, i.e., T (ξ, η, τ ) −
〈T 〉(τ ), in the course of time.

4.2. Special Case: Temperature Field in a Pulse-Heated Quadratic
Niobium Wire

On the basis of the measured current-time diagram of a niobium
specimen displayed in Fig. 3, the electric field has been calculated for a
quadratic wire of 0.44 mm thickness and a conductivity of 2.97×106 
−1 ·
m−1, which corresponds to the conductivity of niobium at ca. 700 K. The
appropriate temperature-time behavior 〈T 〉(t), calculated with Eq. (23), is
shown by the solid line in Fig. 3. It agrees at the melting temperature with
the measured value. Disregarding the melting plateau, the remaining devi-
ations between measurement and calculation are caused by the assumption
of a constant (temperature-independent) electrical conductivity.

For the same situation Fig. 5 presents the calculated deviations of
the temperature field from its mean value, i.e., T (x, y, t) − 〈T 〉(t), at the
times t =6µs, t =14 µs, t =22 µs, and t =28µs after the current has been
switched on. The results show that the deviations accumulate over the
course of time. As in the case of the electric field, the temperature in the
corners is about 30% higher than in the middle of the side surfaces. How-
ever, compared with the niobium melting temperature of 2740 K, reached
after t =22 µs, see Fig. 3, the deviations of the temperature field from its
mean value, which vary between −7 K in the center and +10 K in the cor-
ners of the quadratic wire, are relatively small.

5. SUMMARY

In this paper we calculated analytically the electric field and the tem-
perature field in a pulse-heated wire of quadratic cross section. The quick
increase of the current through the wire during the fast heating process
(see the niobium example in Fig. 3) causes a nonuniform distribution (skin
effect) of both fields over the wire cross section. Their deviations from
the dedicated mean values are of main interest in this paper. The pres-
ent calculations show that, in general, the electric and temperature fields
are lower in the center of the wire than on its side surfaces, and on the
side surfaces they are lower in the middle than in the corners. For a pulse-
heated niobium wire this is exemplified in the left column of Fig. 4 and
Fig. 5. However, compared with the strength of the mean fields, these
deviations are significant only in the first few µs of the heating process,
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Fig. 5. Deviation of the temperature field from its mean value over the cross section of a
quadratic pulse-heated niobium wire for different times after the heating current, shown in
Fig. 3, has been switched on. The deviations increase over the course of time but are still
much lower than the mean temperature.

see the right column of Fig. 4 and the estimation in Eq. (20). Conse-
quently, if the first few µs of a pulse-heating experiment are disregarded,
the error in the calculation of thermophysical properties of a wire speci-
men from the measurement data becomes negligibly small.

Although the simplifying assumption of a constant electrical wire
conductivity led to errors in the calculation of the mean temperature-time
development (see Fig. 3), it had, however, only minor impact on the calcu-
lation of the magnitude of field nonuniformities, considered mainly in this
paper.
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Although the power loss by radiation from the side surfaces of the
wire is negligibly small compared with the total power input by the elec-
tric field during the fast pulse-heating process (see Section 4.1), it causes
nevertheless a temperature drop at these surfaces. The strength of this
temperature nonuniformity, which impacts the pyrometrical temperature
measurement of the wire, depends sensitively on the magnitude of the heat
supply from the bulk to the surface, which is, however, very small within
the very short heating time; see Section 4.1. This problem should be taken
care of, and the order of magnitude of this temperature drop should be
estimated in the future.
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